Metamath Proof Explorer


Theorem ifan

Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion ifan if φ ψ A B = if φ if ψ A B B

Proof

Step Hyp Ref Expression
1 iftrue φ if φ if ψ A B B = if ψ A B
2 ibar φ ψ φ ψ
3 2 ifbid φ if ψ A B = if φ ψ A B
4 1 3 eqtr2d φ if φ ψ A B = if φ if ψ A B B
5 simpl φ ψ φ
6 5 con3i ¬ φ ¬ φ ψ
7 6 iffalsed ¬ φ if φ ψ A B = B
8 iffalse ¬ φ if φ if ψ A B B = B
9 7 8 eqtr4d ¬ φ if φ ψ A B = if φ if ψ A B B
10 4 9 pm2.61i if φ ψ A B = if φ if ψ A B B