Metamath Proof Explorer


Theorem ifbi

Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004)

Ref Expression
Assertion ifbi φ ψ if φ A B = if ψ A B

Proof

Step Hyp Ref Expression
1 dfbi3 φ ψ φ ψ ¬ φ ¬ ψ
2 iftrue φ if φ A B = A
3 iftrue ψ if ψ A B = A
4 3 eqcomd ψ A = if ψ A B
5 2 4 sylan9eq φ ψ if φ A B = if ψ A B
6 iffalse ¬ φ if φ A B = B
7 iffalse ¬ ψ if ψ A B = B
8 7 eqcomd ¬ ψ B = if ψ A B
9 6 8 sylan9eq ¬ φ ¬ ψ if φ A B = if ψ A B
10 5 9 jaoi φ ψ ¬ φ ¬ ψ if φ A B = if ψ A B
11 1 10 sylbi φ ψ if φ A B = if ψ A B