Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The conditional operator for classes
ifbid
Next ⟩
ifbieq1d
Metamath Proof Explorer
Ascii
Unicode
Theorem
ifbid
Description:
Equivalence deduction for conditional operators.
(Contributed by
NM
, 18-Apr-2005)
Ref
Expression
Hypothesis
ifbid.1
⊢
φ
→
ψ
↔
χ
Assertion
ifbid
⊢
φ
→
if
ψ
A
B
=
if
χ
A
B
Proof
Step
Hyp
Ref
Expression
1
ifbid.1
⊢
φ
→
ψ
↔
χ
2
ifbi
⊢
ψ
↔
χ
→
if
ψ
A
B
=
if
χ
A
B
3
1
2
syl
⊢
φ
→
if
ψ
A
B
=
if
χ
A
B