Metamath Proof Explorer


Theorem ifbieq12d

Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses ifbieq12d.1 φ ψ χ
ifbieq12d.2 φ A = C
ifbieq12d.3 φ B = D
Assertion ifbieq12d φ if ψ A B = if χ C D

Proof

Step Hyp Ref Expression
1 ifbieq12d.1 φ ψ χ
2 ifbieq12d.2 φ A = C
3 ifbieq12d.3 φ B = D
4 1 ifbid φ if ψ A B = if χ A B
5 2 3 ifeq12d φ if χ A B = if χ C D
6 4 5 eqtrd φ if ψ A B = if χ C D