Metamath Proof Explorer


Theorem ifbieq12d2

Description: Equivalence deduction for conditional operators. (Contributed by Thierry Arnoux, 14-Feb-2017) (Proof shortened by Wolf Lammen, 24-Jun-2021)

Ref Expression
Hypotheses ifbieq12d2.1 φ ψ χ
ifbieq12d2.2 φ ψ A = C
ifbieq12d2.3 φ ¬ ψ B = D
Assertion ifbieq12d2 φ if ψ A B = if χ C D

Proof

Step Hyp Ref Expression
1 ifbieq12d2.1 φ ψ χ
2 ifbieq12d2.2 φ ψ A = C
3 ifbieq12d2.3 φ ¬ ψ B = D
4 2 3 ifeq12da φ if ψ A B = if ψ C D
5 1 ifbid φ if ψ C D = if χ C D
6 4 5 eqtrd φ if ψ A B = if χ C D