Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality The conditional operator for classes ifbieq12d2  
				
		 
		
			
		 
		Description:   Equivalence deduction for conditional operators.  (Contributed by Thierry Arnoux , 14-Feb-2017)   (Proof shortened by Wolf Lammen , 24-Jun-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ifbieq12d2.1    ⊢   φ   →    ψ   ↔   χ         
					 
					
						ifbieq12d2.2    ⊢    φ   ∧   ψ    →   A  =  C         
					 
					
						ifbieq12d2.3    ⊢    φ   ∧   ¬   ψ      →   B  =  D         
					 
				
					Assertion 
					ifbieq12d2    ⊢   φ   →    if   ψ   A  B   =   if   χ   C  D          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ifbieq12d2.1   ⊢   φ   →    ψ   ↔   χ         
						
							2 
								
							 
							ifbieq12d2.2   ⊢    φ   ∧   ψ    →   A  =  C         
						
							3 
								
							 
							ifbieq12d2.3   ⊢    φ   ∧   ¬   ψ      →   B  =  D         
						
							4 
								2  3 
							 
							ifeq12da   ⊢   φ   →    if   ψ   A  B   =   if   ψ   C  D          
						
							5 
								1 
							 
							ifbid   ⊢   φ   →    if   ψ   C  D   =   if   χ   C  D          
						
							6 
								4  5 
							 
							eqtrd   ⊢   φ   →    if   ψ   A  B   =   if   χ   C  D