Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The conditional operator for classes
ifbieq12d2
Metamath Proof Explorer
Description: Equivalence deduction for conditional operators. (Contributed by Thierry Arnoux , 14-Feb-2017) (Proof shortened by Wolf Lammen , 24-Jun-2021)
Ref
Expression
Hypotheses
ifbieq12d2.1
⊢ φ → ψ ↔ χ
ifbieq12d2.2
⊢ φ ∧ ψ → A = C
ifbieq12d2.3
⊢ φ ∧ ¬ ψ → B = D
Assertion
ifbieq12d2
⊢ φ → if ψ A B = if χ C D
Proof
Step
Hyp
Ref
Expression
1
ifbieq12d2.1
⊢ φ → ψ ↔ χ
2
ifbieq12d2.2
⊢ φ ∧ ψ → A = C
3
ifbieq12d2.3
⊢ φ ∧ ¬ ψ → B = D
4
2 3
ifeq12da
⊢ φ → if ψ A B = if ψ C D
5
1
ifbid
⊢ φ → if ψ C D = if χ C D
6
4 5
eqtrd
⊢ φ → if ψ A B = if χ C D