Metamath Proof Explorer


Theorem ifbieq12i

Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013)

Ref Expression
Hypotheses ifbieq12i.1 φ ψ
ifbieq12i.2 A = C
ifbieq12i.3 B = D
Assertion ifbieq12i if φ A B = if ψ C D

Proof

Step Hyp Ref Expression
1 ifbieq12i.1 φ ψ
2 ifbieq12i.2 A = C
3 ifbieq12i.3 B = D
4 ifeq1 A = C if φ A B = if φ C B
5 2 4 ax-mp if φ A B = if φ C B
6 1 3 ifbieq2i if φ C B = if ψ C D
7 5 6 eqtri if φ A B = if ψ C D