Metamath Proof Explorer


Theorem ifbieq1d

Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018)

Ref Expression
Hypotheses ifbieq1d.1 φ ψ χ
ifbieq1d.2 φ A = B
Assertion ifbieq1d φ if ψ A C = if χ B C

Proof

Step Hyp Ref Expression
1 ifbieq1d.1 φ ψ χ
2 ifbieq1d.2 φ A = B
3 1 ifbid φ if ψ A C = if χ A C
4 2 ifeq1d φ if χ A C = if χ B C
5 3 4 eqtrd φ if ψ A C = if χ B C