Metamath Proof Explorer


Theorem ifbieq2d

Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses ifbieq2d.1 φ ψ χ
ifbieq2d.2 φ A = B
Assertion ifbieq2d φ if ψ C A = if χ C B

Proof

Step Hyp Ref Expression
1 ifbieq2d.1 φ ψ χ
2 ifbieq2d.2 φ A = B
3 1 ifbid φ if ψ C A = if χ C A
4 2 ifeq2d φ if χ C A = if χ C B
5 3 4 eqtrd φ if ψ C A = if χ C B