Metamath Proof Explorer


Theorem ifbieq2i

Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses ifbieq2i.1 φ ψ
ifbieq2i.2 A = B
Assertion ifbieq2i if φ C A = if ψ C B

Proof

Step Hyp Ref Expression
1 ifbieq2i.1 φ ψ
2 ifbieq2i.2 A = B
3 ifbi φ ψ if φ C A = if ψ C A
4 1 3 ax-mp if φ C A = if ψ C A
5 ifeq2 A = B if ψ C A = if ψ C B
6 2 5 ax-mp if ψ C A = if ψ C B
7 4 6 eqtri if φ C A = if ψ C B