Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The conditional operator for classes
ifboth
Metamath Proof Explorer
Description: A wff th containing a conditional operator is true when both of its
cases are true. (Contributed by NM , 3-Sep-2006) (Revised by Mario
Carneiro , 15-Feb-2015)
Ref
Expression
Hypotheses
ifboth.1
⊢ A = if φ A B → ψ ↔ θ
ifboth.2
⊢ B = if φ A B → χ ↔ θ
Assertion
ifboth
⊢ ψ ∧ χ → θ
Proof
Step
Hyp
Ref
Expression
1
ifboth.1
⊢ A = if φ A B → ψ ↔ θ
2
ifboth.2
⊢ B = if φ A B → χ ↔ θ
3
simpll
⊢ ψ ∧ χ ∧ φ → ψ
4
simplr
⊢ ψ ∧ χ ∧ ¬ φ → χ
5
1 2 3 4
ifbothda
⊢ ψ ∧ χ → θ