Metamath Proof Explorer


Theorem ifbothda

Description: A wff th containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015)

Ref Expression
Hypotheses ifboth.1 A = if φ A B ψ θ
ifboth.2 B = if φ A B χ θ
ifbothda.3 η φ ψ
ifbothda.4 η ¬ φ χ
Assertion ifbothda η θ

Proof

Step Hyp Ref Expression
1 ifboth.1 A = if φ A B ψ θ
2 ifboth.2 B = if φ A B χ θ
3 ifbothda.3 η φ ψ
4 ifbothda.4 η ¬ φ χ
5 iftrue φ if φ A B = A
6 5 eqcomd φ A = if φ A B
7 6 1 syl φ ψ θ
8 7 adantl η φ ψ θ
9 3 8 mpbid η φ θ
10 iffalse ¬ φ if φ A B = B
11 10 eqcomd ¬ φ B = if φ A B
12 11 2 syl ¬ φ χ θ
13 12 adantl η ¬ φ χ θ
14 4 13 mpbid η ¬ φ θ
15 9 14 pm2.61dan η θ