Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The conditional operator for classes
ifcl
Next ⟩
ifcld
Metamath Proof Explorer
Ascii
Unicode
Theorem
ifcl
Description:
Membership (closure) of a conditional operator.
(Contributed by
NM
, 4-Apr-2005)
Ref
Expression
Assertion
ifcl
⊢
A
∈
C
∧
B
∈
C
→
if
φ
A
B
∈
C
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
A
=
if
φ
A
B
→
A
∈
C
↔
if
φ
A
B
∈
C
2
eleq1
⊢
B
=
if
φ
A
B
→
B
∈
C
↔
if
φ
A
B
∈
C
3
1
2
ifboth
⊢
A
∈
C
∧
B
∈
C
→
if
φ
A
B
∈
C