Metamath Proof Explorer


Theorem ifcld

Description: Membership (closure) of a conditional operator, deduction form. (Contributed by SO, 16-Jul-2018)

Ref Expression
Hypotheses ifcld.a φ A C
ifcld.b φ B C
Assertion ifcld φ if ψ A B C

Proof

Step Hyp Ref Expression
1 ifcld.a φ A C
2 ifcld.b φ B C
3 ifcl A C B C if ψ A B C
4 1 2 3 syl2anc φ if ψ A B C