Metamath Proof Explorer


Theorem ifcomnan

Description: Commute the conditions in two nested conditionals if both conditions are not simultaneously true. (Contributed by SO, 15-Jul-2018)

Ref Expression
Assertion ifcomnan ¬ φ ψ if φ A if ψ B C = if ψ B if φ A C

Proof

Step Hyp Ref Expression
1 pm3.13 ¬ φ ψ ¬ φ ¬ ψ
2 iffalse ¬ φ if φ A if ψ B C = if ψ B C
3 iffalse ¬ φ if φ A C = C
4 3 ifeq2d ¬ φ if ψ B if φ A C = if ψ B C
5 2 4 eqtr4d ¬ φ if φ A if ψ B C = if ψ B if φ A C
6 iffalse ¬ ψ if ψ B C = C
7 6 ifeq2d ¬ ψ if φ A if ψ B C = if φ A C
8 iffalse ¬ ψ if ψ B if φ A C = if φ A C
9 7 8 eqtr4d ¬ ψ if φ A if ψ B C = if ψ B if φ A C
10 5 9 jaoi ¬ φ ¬ ψ if φ A if ψ B C = if ψ B if φ A C
11 1 10 syl ¬ φ ψ if φ A if ψ B C = if ψ B if φ A C