Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The conditional operator for classes
ifel
Next ⟩
ifcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
ifel
Description:
Membership of a conditional operator.
(Contributed by
NM
, 10-Sep-2005)
Ref
Expression
Assertion
ifel
⊢
if
φ
A
B
∈
C
↔
φ
∧
A
∈
C
∨
¬
φ
∧
B
∈
C
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
if
φ
A
B
=
A
→
if
φ
A
B
∈
C
↔
A
∈
C
2
eleq1
⊢
if
φ
A
B
=
B
→
if
φ
A
B
∈
C
↔
B
∈
C
3
1
2
elimif
⊢
if
φ
A
B
∈
C
↔
φ
∧
A
∈
C
∨
¬
φ
∧
B
∈
C