Metamath Proof Explorer


Theorem ifeq1

Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion ifeq1 A = B if φ A C = if φ B C

Proof

Step Hyp Ref Expression
1 rabeq A = B x A | φ = x B | φ
2 1 uneq1d A = B x A | φ x C | ¬ φ = x B | φ x C | ¬ φ
3 dfif6 if φ A C = x A | φ x C | ¬ φ
4 dfif6 if φ B C = x B | φ x C | ¬ φ
5 2 3 4 3eqtr4g A = B if φ A C = if φ B C