Metamath Proof Explorer


Theorem ifeq12d

Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015)

Ref Expression
Hypotheses ifeq1d.1 φ A = B
ifeq12d.2 φ C = D
Assertion ifeq12d φ if ψ A C = if ψ B D

Proof

Step Hyp Ref Expression
1 ifeq1d.1 φ A = B
2 ifeq12d.2 φ C = D
3 1 ifeq1d φ if ψ A C = if ψ B C
4 2 ifeq2d φ if ψ B C = if ψ B D
5 3 4 eqtrd φ if ψ A C = if ψ B D