Metamath Proof Explorer


Theorem ifeq12da

Description: Equivalence deduction for conditional operators. (Contributed by Wolf Lammen, 24-Jun-2021)

Ref Expression
Hypotheses ifeq12da.1 φ ψ A = C
ifeq12da.2 φ ¬ ψ B = D
Assertion ifeq12da φ if ψ A B = if ψ C D

Proof

Step Hyp Ref Expression
1 ifeq12da.1 φ ψ A = C
2 ifeq12da.2 φ ¬ ψ B = D
3 1 ifeq1da φ if ψ A B = if ψ C B
4 iftrue ψ if ψ C B = C
5 iftrue ψ if ψ C D = C
6 4 5 eqtr4d ψ if ψ C B = if ψ C D
7 3 6 sylan9eq φ ψ if ψ A B = if ψ C D
8 2 ifeq2da φ if ψ A B = if ψ A D
9 iffalse ¬ ψ if ψ A D = D
10 iffalse ¬ ψ if ψ C D = D
11 9 10 eqtr4d ¬ ψ if ψ A D = if ψ C D
12 8 11 sylan9eq φ ¬ ψ if ψ A B = if ψ C D
13 7 12 pm2.61dan φ if ψ A B = if ψ C D