Metamath Proof Explorer


Theorem ifeq1da

Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis ifeq1da.1 φ ψ A = B
Assertion ifeq1da φ if ψ A C = if ψ B C

Proof

Step Hyp Ref Expression
1 ifeq1da.1 φ ψ A = B
2 1 ifeq1d φ ψ if ψ A C = if ψ B C
3 iffalse ¬ ψ if ψ A C = C
4 iffalse ¬ ψ if ψ B C = C
5 3 4 eqtr4d ¬ ψ if ψ A C = if ψ B C
6 5 adantl φ ¬ ψ if ψ A C = if ψ B C
7 2 6 pm2.61dan φ if ψ A C = if ψ B C