Metamath Proof Explorer


Theorem ifeq2

Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion ifeq2 A = B if φ C A = if φ C B

Proof

Step Hyp Ref Expression
1 rabeq A = B x A | ¬ φ = x B | ¬ φ
2 1 uneq2d A = B x C | φ x A | ¬ φ = x C | φ x B | ¬ φ
3 dfif6 if φ C A = x C | φ x A | ¬ φ
4 dfif6 if φ C B = x C | φ x B | ¬ φ
5 2 3 4 3eqtr4g A = B if φ C A = if φ C B