Metamath Proof Explorer


Theorem ifeq2da

Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis ifeq2da.1 φ ¬ ψ A = B
Assertion ifeq2da φ if ψ C A = if ψ C B

Proof

Step Hyp Ref Expression
1 ifeq2da.1 φ ¬ ψ A = B
2 iftrue ψ if ψ C A = C
3 iftrue ψ if ψ C B = C
4 2 3 eqtr4d ψ if ψ C A = if ψ C B
5 4 adantl φ ψ if ψ C A = if ψ C B
6 1 ifeq2d φ ¬ ψ if ψ C A = if ψ C B
7 5 6 pm2.61dan φ if ψ C A = if ψ C B