Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The conditional operator for classes
ifeq2da
Next ⟩
ifeq12da
Metamath Proof Explorer
Ascii
Unicode
Theorem
ifeq2da
Description:
Conditional equality.
(Contributed by
Jeff Madsen
, 2-Sep-2009)
Ref
Expression
Hypothesis
ifeq2da.1
⊢
φ
∧
¬
ψ
→
A
=
B
Assertion
ifeq2da
⊢
φ
→
if
ψ
C
A
=
if
ψ
C
B
Proof
Step
Hyp
Ref
Expression
1
ifeq2da.1
⊢
φ
∧
¬
ψ
→
A
=
B
2
iftrue
⊢
ψ
→
if
ψ
C
A
=
C
3
iftrue
⊢
ψ
→
if
ψ
C
B
=
C
4
2
3
eqtr4d
⊢
ψ
→
if
ψ
C
A
=
if
ψ
C
B
5
4
adantl
⊢
φ
∧
ψ
→
if
ψ
C
A
=
if
ψ
C
B
6
1
ifeq2d
⊢
φ
∧
¬
ψ
→
if
ψ
C
A
=
if
ψ
C
B
7
5
6
pm2.61dan
⊢
φ
→
if
ψ
C
A
=
if
ψ
C
B