Metamath Proof Explorer


Theorem ifeq3da

Description: Given an expression C containing if ( ps , E , F ) , substitute (hypotheses .1 and .2) and evaluate (hypotheses .3 and .4) it for both cases at the same time. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypotheses ifeq3da.1 if ψ E F = E C = G
ifeq3da.2 if ψ E F = F C = H
ifeq3da.3 φ G = A
ifeq3da.4 φ H = B
Assertion ifeq3da φ if ψ A B = C

Proof

Step Hyp Ref Expression
1 ifeq3da.1 if ψ E F = E C = G
2 ifeq3da.2 if ψ E F = F C = H
3 ifeq3da.3 φ G = A
4 ifeq3da.4 φ H = B
5 iftrue ψ if ψ E F = E
6 5 1 syl ψ C = G
7 6 adantl φ ψ C = G
8 3 adantr φ ψ G = A
9 7 8 eqtr2d φ ψ A = C
10 iffalse ¬ ψ if ψ E F = F
11 10 2 syl ¬ ψ C = H
12 11 adantl φ ¬ ψ C = H
13 4 adantr φ ¬ ψ H = B
14 12 13 eqtr2d φ ¬ ψ B = C
15 9 14 ifeqda φ if ψ A B = C