Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
General Set Theory
Conditional operator - misc additions
ifeq3da
Metamath Proof Explorer
Description: Given an expression C containing if ( ps , E , F ) , substitute
(hypotheses .1 and .2) and evaluate (hypotheses .3 and .4) it for both
cases at the same time. (Contributed by Thierry Arnoux , 13-Dec-2021)
Ref
Expression
Hypotheses
ifeq3da.1
⊢ if ψ E F = E → C = G
ifeq3da.2
⊢ if ψ E F = F → C = H
ifeq3da.3
⊢ φ → G = A
ifeq3da.4
⊢ φ → H = B
Assertion
ifeq3da
⊢ φ → if ψ A B = C
Proof
Step
Hyp
Ref
Expression
1
ifeq3da.1
⊢ if ψ E F = E → C = G
2
ifeq3da.2
⊢ if ψ E F = F → C = H
3
ifeq3da.3
⊢ φ → G = A
4
ifeq3da.4
⊢ φ → H = B
5
iftrue
⊢ ψ → if ψ E F = E
6
5 1
syl
⊢ ψ → C = G
7
6
adantl
⊢ φ ∧ ψ → C = G
8
3
adantr
⊢ φ ∧ ψ → G = A
9
7 8
eqtr2d
⊢ φ ∧ ψ → A = C
10
iffalse
⊢ ¬ ψ → if ψ E F = F
11
10 2
syl
⊢ ¬ ψ → C = H
12
11
adantl
⊢ φ ∧ ¬ ψ → C = H
13
4
adantr
⊢ φ ∧ ¬ ψ → H = B
14
12 13
eqtr2d
⊢ φ ∧ ¬ ψ → B = C
15
9 14
ifeqda
⊢ φ → if ψ A B = C