Metamath Proof Explorer


Theorem ifeqda

Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018)

Ref Expression
Hypotheses ifeqda.1 φ ψ A = C
ifeqda.2 φ ¬ ψ B = C
Assertion ifeqda φ if ψ A B = C

Proof

Step Hyp Ref Expression
1 ifeqda.1 φ ψ A = C
2 ifeqda.2 φ ¬ ψ B = C
3 iftrue ψ if ψ A B = A
4 3 adantl φ ψ if ψ A B = A
5 4 1 eqtrd φ ψ if ψ A B = C
6 iffalse ¬ ψ if ψ A B = B
7 6 adantl φ ¬ ψ if ψ A B = B
8 7 2 eqtrd φ ¬ ψ if ψ A B = C
9 5 8 pm2.61dan φ if ψ A B = C