Step |
Hyp |
Ref |
Expression |
1 |
|
ifeqeqx.1 |
|
2 |
|
ifeqeqx.2 |
|
3 |
|
ifeqeqx.3 |
|
4 |
|
ifeqeqx.4 |
|
5 |
|
ifeqeqx.5 |
|
6 |
|
ifeqeqx.6 |
|
7 |
|
ifeqeqx.y |
|
8 |
|
ifeqeqx.x |
|
9 |
|
eqeq2 |
|
10 |
|
eqeq2 |
|
11 |
|
simplr |
|
12 |
|
simpll |
|
13 |
|
simpr |
|
14 |
|
sbceq1a |
|
15 |
14
|
biimpd |
|
16 |
11 13 15
|
sylc |
|
17 |
|
dfsbcq |
|
18 |
|
csbeq1 |
|
19 |
18
|
eqeq2d |
|
20 |
17 19
|
imbi12d |
|
21 |
|
dfsbcq |
|
22 |
|
csbeq1 |
|
23 |
22
|
eqeq2d |
|
24 |
21 23
|
imbi12d |
|
25 |
|
nfcvd |
|
26 |
25 1
|
csbiegf |
|
27 |
8 26
|
syl |
|
28 |
27 5
|
eqtr4d |
|
29 |
28
|
adantr |
|
30 |
29
|
eqcomd |
|
31 |
30
|
a1d |
|
32 |
|
pm3.24 |
|
33 |
4
|
sbcieg |
|
34 |
7 33
|
syl |
|
35 |
34
|
anbi1d |
|
36 |
32 35
|
mtbiri |
|
37 |
36
|
pm2.21d |
|
38 |
37
|
imp |
|
39 |
38
|
anass1rs |
|
40 |
39
|
ex |
|
41 |
20 24 31 40
|
ifbothda |
|
42 |
12 16 41
|
sylc |
|
43 |
|
csbeq1a |
|
44 |
43
|
eqeq2d |
|
45 |
44
|
biimprd |
|
46 |
11 42 45
|
sylc |
|
47 |
|
simplr |
|
48 |
|
simpll |
|
49 |
|
simpr |
|
50 |
14
|
notbid |
|
51 |
50
|
biimpd |
|
52 |
47 49 51
|
sylc |
|
53 |
17
|
notbid |
|
54 |
|
csbeq1 |
|
55 |
54
|
eqeq2d |
|
56 |
53 55
|
imbi12d |
|
57 |
21
|
notbid |
|
58 |
|
csbeq1 |
|
59 |
58
|
eqeq2d |
|
60 |
57 59
|
imbi12d |
|
61 |
3
|
sbcieg |
|
62 |
8 61
|
syl |
|
63 |
62
|
notbid |
|
64 |
63
|
biimpd |
|
65 |
6
|
ex |
|
66 |
64 65
|
nsyld |
|
67 |
66
|
anim2d |
|
68 |
32 67
|
mtoi |
|
69 |
68
|
pm2.21d |
|
70 |
69
|
expdimp |
|
71 |
|
nfcvd |
|
72 |
71 2
|
csbiegf |
|
73 |
7 72
|
syl |
|
74 |
73
|
adantr |
|
75 |
74
|
eqcomd |
|
76 |
75
|
a1d |
|
77 |
56 60 70 76
|
ifbothda |
|
78 |
48 52 77
|
sylc |
|
79 |
|
csbeq1a |
|
80 |
79
|
eqeq2d |
|
81 |
80
|
biimprd |
|
82 |
47 78 81
|
sylc |
|
83 |
9 10 46 82
|
ifbothda |
|