Metamath Proof Explorer


Theorem ifeqor

Description: The possible values of a conditional operator. (Contributed by NM, 17-Jun-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion ifeqor if φ A B = A if φ A B = B

Proof

Step Hyp Ref Expression
1 iftrue φ if φ A B = A
2 1 con3i ¬ if φ A B = A ¬ φ
3 2 iffalsed ¬ if φ A B = A if φ A B = B
4 3 orri if φ A B = A if φ A B = B