Metamath Proof Explorer


Theorem ifexd

Description: Existence of the conditional operator (deduction form). (Contributed by SN, 26-Jul-2024)

Ref Expression
Hypotheses ifexd.1 φ A V
ifexd.2 φ B W
Assertion ifexd φ if ψ A B V

Proof

Step Hyp Ref Expression
1 ifexd.1 φ A V
2 ifexd.2 φ B W
3 1 elexd φ A V
4 2 elexd φ B V
5 3 4 ifcld φ if ψ A B V