Metamath Proof Explorer


Theorem ifexg

Description: Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011) (Proof shortened by BJ, 1-Sep-2022)

Ref Expression
Assertion ifexg A V B W if φ A B V

Proof

Step Hyp Ref Expression
1 simpl A V B W A V
2 simpr A V B W B W
3 1 2 ifexd A V B W if φ A B V