Metamath Proof Explorer


Theorem iffalse

Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999)

Ref Expression
Assertion iffalse ¬ φ if φ A B = B

Proof

Step Hyp Ref Expression
1 df-if if φ A B = x | x A φ x B ¬ φ
2 dedlemb ¬ φ x B x A φ x B ¬ φ
3 2 abbi2dv ¬ φ B = x | x A φ x B ¬ φ
4 1 3 eqtr4id ¬ φ if φ A B = B