Metamath Proof Explorer


Theorem iffalsei

Description: Inference associated with iffalse . (Contributed by BJ, 7-Oct-2018)

Ref Expression
Hypothesis iffalsei.1 ¬ φ
Assertion iffalsei if φ A B = B

Proof

Step Hyp Ref Expression
1 iffalsei.1 ¬ φ
2 iffalse ¬ φ if φ A B = B
3 1 2 ax-mp if φ A B = B