Metamath Proof Explorer


Theorem ifhvhv0

Description: Prove if ( A e. ~H , A , 0h ) e. ~H . (Contributed by David A. Wheeler, 7-Dec-2018) (New usage is discouraged.)

Ref Expression
Assertion ifhvhv0 if A A 0

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 1 elimel if A A 0