Metamath Proof Explorer


Theorem ifnebib

Description: The converse of ifbi holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Assertion ifnebib A B if φ A B = if ψ A B φ ψ

Proof

Step Hyp Ref Expression
1 eqif if φ A B = if ψ A B ψ if φ A B = A ¬ ψ if φ A B = B
2 ifnetrue A B if φ A B = A φ
3 2 adantrl A B ψ if φ A B = A φ
4 simprl A B ψ if φ A B = A ψ
5 3 4 2thd A B ψ if φ A B = A φ ψ
6 ifnefals A B if φ A B = B ¬ φ
7 6 adantrl A B ¬ ψ if φ A B = B ¬ φ
8 simprl A B ¬ ψ if φ A B = B ¬ ψ
9 7 8 2falsed A B ¬ ψ if φ A B = B φ ψ
10 5 9 jaodan A B ψ if φ A B = A ¬ ψ if φ A B = B φ ψ
11 1 10 sylan2b A B if φ A B = if ψ A B φ ψ
12 ifbi φ ψ if φ A B = if ψ A B
13 12 adantl A B φ ψ if φ A B = if ψ A B
14 11 13 impbida A B if φ A B = if ψ A B φ ψ