Metamath Proof Explorer


Theorem ifnefals

Description: Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Assertion ifnefals A B if φ A B = B ¬ φ

Proof

Step Hyp Ref Expression
1 iftrue φ if φ A B = A
2 1 adantl A B if φ A B = B φ if φ A B = A
3 simplr A B if φ A B = B φ if φ A B = B
4 simpll A B if φ A B = B φ A B
5 4 necomd A B if φ A B = B φ B A
6 3 5 eqnetrd A B if φ A B = B φ if φ A B A
7 6 neneqd A B if φ A B = B φ ¬ if φ A B = A
8 2 7 pm2.65da A B if φ A B = B ¬ φ