Metamath Proof Explorer


Theorem ifnetrue

Description: Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Assertion ifnetrue A B if φ A B = A φ

Proof

Step Hyp Ref Expression
1 iffalse ¬ φ if φ A B = B
2 1 adantl A B if φ A B = A ¬ φ if φ A B = B
3 simplr A B if φ A B = A ¬ φ if φ A B = A
4 simpll A B if φ A B = A ¬ φ A B
5 3 4 eqnetrd A B if φ A B = A ¬ φ if φ A B B
6 5 neneqd A B if φ A B = A ¬ φ ¬ if φ A B = B
7 2 6 condan A B if φ A B = A φ