Metamath Proof Explorer


Theorem ifnot

Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007)

Ref Expression
Assertion ifnot if ¬ φ A B = if φ B A

Proof

Step Hyp Ref Expression
1 notnot φ ¬ ¬ φ
2 1 iffalsed φ if ¬ φ A B = B
3 iftrue φ if φ B A = B
4 2 3 eqtr4d φ if ¬ φ A B = if φ B A
5 iftrue ¬ φ if ¬ φ A B = A
6 iffalse ¬ φ if φ B A = A
7 5 6 eqtr4d ¬ φ if ¬ φ A B = if φ B A
8 4 7 pm2.61i if ¬ φ A B = if φ B A