Metamath Proof Explorer


Theorem ifor

Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion ifor if φ ψ A B = if φ A if ψ A B

Proof

Step Hyp Ref Expression
1 iftrue φ ψ if φ ψ A B = A
2 1 orcs φ if φ ψ A B = A
3 iftrue φ if φ A if ψ A B = A
4 2 3 eqtr4d φ if φ ψ A B = if φ A if ψ A B
5 iffalse ¬ φ if φ A if ψ A B = if ψ A B
6 biorf ¬ φ ψ φ ψ
7 6 ifbid ¬ φ if ψ A B = if φ ψ A B
8 5 7 eqtr2d ¬ φ if φ ψ A B = if φ A if ψ A B
9 4 8 pm2.61i if φ ψ A B = if φ A if ψ A B