Metamath Proof Explorer


Theorem ifpbi123d

Description: Equivalence deduction for conditional operator for propositions. (Contributed by AV, 30-Dec-2020) (Proof shortened by Wolf Lammen, 17-Apr-2024)

Ref Expression
Hypotheses ifpbi123d.1 φ ψ τ
ifpbi123d.2 φ χ η
ifpbi123d.3 φ θ ζ
Assertion ifpbi123d φ if- ψ χ θ if- τ η ζ

Proof

Step Hyp Ref Expression
1 ifpbi123d.1 φ ψ τ
2 ifpbi123d.2 φ χ η
3 ifpbi123d.3 φ θ ζ
4 1 2 imbi12d φ ψ χ τ η
5 1 3 orbi12d φ ψ θ τ ζ
6 4 5 anbi12d φ ψ χ ψ θ τ η τ ζ
7 dfifp3 if- ψ χ θ ψ χ ψ θ
8 dfifp3 if- τ η ζ τ η τ ζ
9 6 7 8 3bitr4g φ if- ψ χ θ if- τ η ζ