Metamath Proof Explorer


Theorem ifpdfbi

Description: Define the biconditional as conditional logic operator. (Contributed by RP, 20-Apr-2020) (Proof shortened by Wolf Lammen, 30-Apr-2024)

Ref Expression
Assertion ifpdfbi φ ψ if- φ ψ ¬ ψ

Proof

Step Hyp Ref Expression
1 con34b ψ φ ¬ φ ¬ ψ
2 1 anbi2i φ ψ ψ φ φ ψ ¬ φ ¬ ψ
3 dfbi2 φ ψ φ ψ ψ φ
4 dfifp2 if- φ ψ ¬ ψ φ ψ ¬ φ ¬ ψ
5 2 3 4 3bitr4i φ ψ if- φ ψ ¬ ψ