Metamath Proof Explorer


Theorem ifpfal

Description: Value of the conditional operator for propositions when its first argument is false. Analogue for propositions of iffalse . This is essentially dedlemb . (Contributed by BJ, 20-Sep-2019) (Proof shortened by Wolf Lammen, 25-Jun-2020)

Ref Expression
Assertion ifpfal ¬ φ if- φ ψ χ χ

Proof

Step Hyp Ref Expression
1 ifpn if- φ ψ χ if- ¬ φ χ ψ
2 ifptru ¬ φ if- ¬ φ χ ψ χ
3 1 2 syl5bb ¬ φ if- φ ψ χ χ