Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
The conditional operator for propositions
ifpimpda
Metamath Proof Explorer
Description: Separation of the values of the conditional operator for propositions.
(Contributed by AV , 30-Dec-2020) (Proof shortened by Wolf Lammen , 27-Feb-2021)
Ref
Expression
Hypotheses
ifpimpda.1
⊢ φ ∧ ψ → χ
ifpimpda.2
⊢ φ ∧ ¬ ψ → θ
Assertion
ifpimpda
⊢ φ → if- ψ χ θ
Proof
Step
Hyp
Ref
Expression
1
ifpimpda.1
⊢ φ ∧ ψ → χ
2
ifpimpda.2
⊢ φ ∧ ¬ ψ → θ
3
1
ex
⊢ φ → ψ → χ
4
2
ex
⊢ φ → ¬ ψ → θ
5
dfifp2
⊢ if- ψ χ θ ↔ ψ → χ ∧ ¬ ψ → θ
6
3 4 5
sylanbrc
⊢ φ → if- ψ χ θ