Metamath Proof Explorer


Theorem ifpimpda

Description: Separation of the values of the conditional operator for propositions. (Contributed by AV, 30-Dec-2020) (Proof shortened by Wolf Lammen, 27-Feb-2021)

Ref Expression
Hypotheses ifpimpda.1 φ ψ χ
ifpimpda.2 φ ¬ ψ θ
Assertion ifpimpda φ if- ψ χ θ

Proof

Step Hyp Ref Expression
1 ifpimpda.1 φ ψ χ
2 ifpimpda.2 φ ¬ ψ θ
3 1 ex φ ψ χ
4 2 ex φ ¬ ψ θ
5 dfifp2 if- ψ χ θ ψ χ ¬ ψ θ
6 3 4 5 sylanbrc φ if- ψ χ θ