Metamath Proof Explorer


Theorem ifpn

Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019) (Proof shortened by Wolf Lammen, 5-May-2024)

Ref Expression
Assertion ifpn if- φ ψ χ if- ¬ φ χ ψ

Proof

Step Hyp Ref Expression
1 ancom ¬ φ ψ ¬ φ χ ¬ φ χ ¬ φ ψ
2 dfifp5 if- φ ψ χ ¬ φ ψ ¬ φ χ
3 dfifp3 if- ¬ φ χ ψ ¬ φ χ ¬ φ ψ
4 1 2 3 3bitr4i if- φ ψ χ if- ¬ φ χ ψ