Metamath Proof Explorer


Theorem ifpnOLD

Description: Obsolete version of ifpn as of 5-May-2024. (Contributed by BJ, 30-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ifpnOLD if- φ ψ χ if- ¬ φ χ ψ

Proof

Step Hyp Ref Expression
1 notnotb φ ¬ ¬ φ
2 1 imbi1i φ ψ ¬ ¬ φ ψ
3 2 anbi2ci φ ψ ¬ φ χ ¬ φ χ ¬ ¬ φ ψ
4 dfifp2 if- φ ψ χ φ ψ ¬ φ χ
5 dfifp2 if- ¬ φ χ ψ ¬ φ χ ¬ ¬ φ ψ
6 3 4 5 3bitr4i if- φ ψ χ if- ¬ φ χ ψ