Metamath Proof Explorer


Theorem ifpor

Description: The conditional operator implies the disjunction of its possible outputs. Dual statement of anifp . (Contributed by BJ, 1-Oct-2019)

Ref Expression
Assertion ifpor if- φ ψ χ ψ χ

Proof

Step Hyp Ref Expression
1 df-ifp if- φ ψ χ φ ψ ¬ φ χ
2 simpr φ ψ ψ
3 simpr ¬ φ χ χ
4 2 3 orim12i φ ψ ¬ φ χ ψ χ
5 1 4 sylbi if- φ ψ χ ψ χ