Metamath Proof Explorer


Theorem ifpr

Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007)

Ref Expression
Assertion ifpr A C B D if φ A B A B

Proof

Step Hyp Ref Expression
1 elex A C A V
2 elex B D B V
3 ifcl A V B V if φ A B V
4 ifeqor if φ A B = A if φ A B = B
5 elprg if φ A B V if φ A B A B if φ A B = A if φ A B = B
6 4 5 mpbiri if φ A B V if φ A B A B
7 3 6 syl A V B V if φ A B A B
8 1 2 7 syl2an A C B D if φ A B A B