Metamath Proof Explorer


Theorem ifptru

Description: Value of the conditional operator for propositions when its first argument is true. Analogue for propositions of iftrue . This is essentially dedlema . (Contributed by BJ, 20-Sep-2019) (Proof shortened by Wolf Lammen, 10-Jul-2020)

Ref Expression
Assertion ifptru φ if- φ ψ χ ψ

Proof

Step Hyp Ref Expression
1 biimt φ ψ φ ψ
2 orc φ φ χ
3 2 biantrud φ φ ψ φ ψ φ χ
4 dfifp3 if- φ ψ χ φ ψ φ χ
5 3 4 bitr4di φ φ ψ if- φ ψ χ
6 1 5 bitr2d φ if- φ ψ χ ψ