Step |
Hyp |
Ref |
Expression |
1 |
|
ig1peu.p |
|
2 |
|
ig1peu.u |
|
3 |
|
ig1peu.z |
|
4 |
|
ig1peu.m |
|
5 |
|
ig1peu.d |
|
6 |
|
eqid |
|
7 |
6 2
|
lidlss |
|
8 |
7
|
3ad2ant2 |
|
9 |
8
|
ssdifd |
|
10 |
|
imass2 |
|
11 |
9 10
|
syl |
|
12 |
|
drngring |
|
13 |
12
|
3ad2ant1 |
|
14 |
5 1 3 6
|
deg1n0ima |
|
15 |
13 14
|
syl |
|
16 |
11 15
|
sstrd |
|
17 |
|
nn0uz |
|
18 |
16 17
|
sseqtrdi |
|
19 |
1
|
ply1ring |
|
20 |
13 19
|
syl |
|
21 |
|
simp2 |
|
22 |
2 3
|
lidl0cl |
|
23 |
20 21 22
|
syl2anc |
|
24 |
23
|
snssd |
|
25 |
|
simp3 |
|
26 |
25
|
necomd |
|
27 |
|
pssdifn0 |
|
28 |
24 26 27
|
syl2anc |
|
29 |
5 1 6
|
deg1xrf |
|
30 |
|
ffn |
|
31 |
29 30
|
ax-mp |
|
32 |
31
|
a1i |
|
33 |
8
|
ssdifssd |
|
34 |
|
fnimaeq0 |
|
35 |
32 33 34
|
syl2anc |
|
36 |
35
|
necon3bid |
|
37 |
28 36
|
mpbird |
|
38 |
|
infssuzcl |
|
39 |
18 37 38
|
syl2anc |
|
40 |
32 33
|
fvelimabd |
|
41 |
39 40
|
mpbid |
|
42 |
20
|
adantr |
|
43 |
|
simpl2 |
|
44 |
13
|
adantr |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
1 45 46 6
|
ply1sclf |
|
48 |
44 47
|
syl |
|
49 |
|
simpl1 |
|
50 |
33
|
sselda |
|
51 |
|
eldifsni |
|
52 |
51
|
adantl |
|
53 |
|
eqid |
|
54 |
1 6 3 53
|
drnguc1p |
|
55 |
49 50 52 54
|
syl3anc |
|
56 |
|
eqid |
|
57 |
5 56 53
|
uc1pldg |
|
58 |
55 57
|
syl |
|
59 |
|
eqid |
|
60 |
56 59
|
unitinvcl |
|
61 |
44 58 60
|
syl2anc |
|
62 |
46 56
|
unitcl |
|
63 |
61 62
|
syl |
|
64 |
48 63
|
ffvelrnd |
|
65 |
|
eldifi |
|
66 |
65
|
adantl |
|
67 |
|
eqid |
|
68 |
2 6 67
|
lidlmcl |
|
69 |
42 43 64 66 68
|
syl22anc |
|
70 |
53 4 1 67 45 5 59
|
uc1pmon1p |
|
71 |
44 55 70
|
syl2anc |
|
72 |
69 71
|
elind |
|
73 |
|
eqid |
|
74 |
73 56
|
unitrrg |
|
75 |
44 74
|
syl |
|
76 |
75 61
|
sseldd |
|
77 |
5 1 73 6 67 45
|
deg1mul3 |
|
78 |
44 76 50 77
|
syl3anc |
|
79 |
|
fveqeq2 |
|
80 |
79
|
rspcev |
|
81 |
72 78 80
|
syl2anc |
|
82 |
|
eqeq2 |
|
83 |
82
|
rexbidv |
|
84 |
81 83
|
syl5ibcom |
|
85 |
84
|
rexlimdva |
|
86 |
41 85
|
mpd |
|
87 |
|
eqid |
|
88 |
13
|
ad2antrr |
|
89 |
|
simprl |
|
90 |
89
|
elin2d |
|
91 |
90
|
adantr |
|
92 |
|
simprl |
|
93 |
|
simprr |
|
94 |
93
|
elin2d |
|
95 |
94
|
adantr |
|
96 |
|
simprr |
|
97 |
5 4 1 87 88 91 92 95 96
|
deg1submon1p |
|
98 |
97
|
ex |
|
99 |
18
|
ad2antrr |
|
100 |
31
|
a1i |
|
101 |
33
|
ad2antrr |
|
102 |
20
|
adantr |
|
103 |
|
simpl2 |
|
104 |
89
|
elin1d |
|
105 |
93
|
elin1d |
|
106 |
2 87
|
lidlsubcl |
|
107 |
102 103 104 105 106
|
syl22anc |
|
108 |
107
|
adantr |
|
109 |
|
simpr |
|
110 |
|
eldifsn |
|
111 |
108 109 110
|
sylanbrc |
|
112 |
|
fnfvima |
|
113 |
100 101 111 112
|
syl3anc |
|
114 |
|
infssuzle |
|
115 |
99 113 114
|
syl2anc |
|
116 |
115
|
ex |
|
117 |
|
imassrn |
|
118 |
|
frn |
|
119 |
29 118
|
ax-mp |
|
120 |
117 119
|
sstri |
|
121 |
120 39
|
sselid |
|
122 |
121
|
adantr |
|
123 |
|
ringgrp |
|
124 |
20 123
|
syl |
|
125 |
124
|
adantr |
|
126 |
|
inss1 |
|
127 |
126 8
|
sstrid |
|
128 |
127
|
adantr |
|
129 |
128 89
|
sseldd |
|
130 |
128 93
|
sseldd |
|
131 |
6 87
|
grpsubcl |
|
132 |
125 129 130 131
|
syl3anc |
|
133 |
5 1 6
|
deg1xrcl |
|
134 |
132 133
|
syl |
|
135 |
122 134
|
xrlenltd |
|
136 |
116 135
|
sylibd |
|
137 |
136
|
necon4ad |
|
138 |
98 137
|
syld |
|
139 |
6 3 87
|
grpsubeq0 |
|
140 |
125 129 130 139
|
syl3anc |
|
141 |
138 140
|
sylibd |
|
142 |
141
|
ralrimivva |
|
143 |
|
fveqeq2 |
|
144 |
143
|
reu4 |
|
145 |
86 142 144
|
sylanbrc |
|