Metamath Proof Explorer


Theorem ig1peu

Description: There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015) (Revised by AV, 25-Sep-2020)

Ref Expression
Hypotheses ig1peu.p P = Poly 1 R
ig1peu.u U = LIdeal P
ig1peu.z 0 ˙ = 0 P
ig1peu.m M = Monic 1p R
ig1peu.d D = deg 1 R
Assertion ig1peu R DivRing I U I 0 ˙ ∃! g I M D g = sup D I 0 ˙ <

Proof

Step Hyp Ref Expression
1 ig1peu.p P = Poly 1 R
2 ig1peu.u U = LIdeal P
3 ig1peu.z 0 ˙ = 0 P
4 ig1peu.m M = Monic 1p R
5 ig1peu.d D = deg 1 R
6 eqid Base P = Base P
7 6 2 lidlss I U I Base P
8 7 3ad2ant2 R DivRing I U I 0 ˙ I Base P
9 8 ssdifd R DivRing I U I 0 ˙ I 0 ˙ Base P 0 ˙
10 imass2 I 0 ˙ Base P 0 ˙ D I 0 ˙ D Base P 0 ˙
11 9 10 syl R DivRing I U I 0 ˙ D I 0 ˙ D Base P 0 ˙
12 drngring R DivRing R Ring
13 12 3ad2ant1 R DivRing I U I 0 ˙ R Ring
14 5 1 3 6 deg1n0ima R Ring D Base P 0 ˙ 0
15 13 14 syl R DivRing I U I 0 ˙ D Base P 0 ˙ 0
16 11 15 sstrd R DivRing I U I 0 ˙ D I 0 ˙ 0
17 nn0uz 0 = 0
18 16 17 sseqtrdi R DivRing I U I 0 ˙ D I 0 ˙ 0
19 1 ply1ring R Ring P Ring
20 13 19 syl R DivRing I U I 0 ˙ P Ring
21 simp2 R DivRing I U I 0 ˙ I U
22 2 3 lidl0cl P Ring I U 0 ˙ I
23 20 21 22 syl2anc R DivRing I U I 0 ˙ 0 ˙ I
24 23 snssd R DivRing I U I 0 ˙ 0 ˙ I
25 simp3 R DivRing I U I 0 ˙ I 0 ˙
26 25 necomd R DivRing I U I 0 ˙ 0 ˙ I
27 pssdifn0 0 ˙ I 0 ˙ I I 0 ˙
28 24 26 27 syl2anc R DivRing I U I 0 ˙ I 0 ˙
29 5 1 6 deg1xrf D : Base P *
30 ffn D : Base P * D Fn Base P
31 29 30 ax-mp D Fn Base P
32 31 a1i R DivRing I U I 0 ˙ D Fn Base P
33 8 ssdifssd R DivRing I U I 0 ˙ I 0 ˙ Base P
34 fnimaeq0 D Fn Base P I 0 ˙ Base P D I 0 ˙ = I 0 ˙ =
35 32 33 34 syl2anc R DivRing I U I 0 ˙ D I 0 ˙ = I 0 ˙ =
36 35 necon3bid R DivRing I U I 0 ˙ D I 0 ˙ I 0 ˙
37 28 36 mpbird R DivRing I U I 0 ˙ D I 0 ˙
38 infssuzcl D I 0 ˙ 0 D I 0 ˙ sup D I 0 ˙ < D I 0 ˙
39 18 37 38 syl2anc R DivRing I U I 0 ˙ sup D I 0 ˙ < D I 0 ˙
40 32 33 fvelimabd R DivRing I U I 0 ˙ sup D I 0 ˙ < D I 0 ˙ h I 0 ˙ D h = sup D I 0 ˙ <
41 39 40 mpbid R DivRing I U I 0 ˙ h I 0 ˙ D h = sup D I 0 ˙ <
42 20 adantr R DivRing I U I 0 ˙ h I 0 ˙ P Ring
43 simpl2 R DivRing I U I 0 ˙ h I 0 ˙ I U
44 13 adantr R DivRing I U I 0 ˙ h I 0 ˙ R Ring
45 eqid algSc P = algSc P
46 eqid Base R = Base R
47 1 45 46 6 ply1sclf R Ring algSc P : Base R Base P
48 44 47 syl R DivRing I U I 0 ˙ h I 0 ˙ algSc P : Base R Base P
49 simpl1 R DivRing I U I 0 ˙ h I 0 ˙ R DivRing
50 33 sselda R DivRing I U I 0 ˙ h I 0 ˙ h Base P
51 eldifsni h I 0 ˙ h 0 ˙
52 51 adantl R DivRing I U I 0 ˙ h I 0 ˙ h 0 ˙
53 eqid Unic 1p R = Unic 1p R
54 1 6 3 53 drnguc1p R DivRing h Base P h 0 ˙ h Unic 1p R
55 49 50 52 54 syl3anc R DivRing I U I 0 ˙ h I 0 ˙ h Unic 1p R
56 eqid Unit R = Unit R
57 5 56 53 uc1pldg h Unic 1p R coe 1 h D h Unit R
58 55 57 syl R DivRing I U I 0 ˙ h I 0 ˙ coe 1 h D h Unit R
59 eqid inv r R = inv r R
60 56 59 unitinvcl R Ring coe 1 h D h Unit R inv r R coe 1 h D h Unit R
61 44 58 60 syl2anc R DivRing I U I 0 ˙ h I 0 ˙ inv r R coe 1 h D h Unit R
62 46 56 unitcl inv r R coe 1 h D h Unit R inv r R coe 1 h D h Base R
63 61 62 syl R DivRing I U I 0 ˙ h I 0 ˙ inv r R coe 1 h D h Base R
64 48 63 ffvelrnd R DivRing I U I 0 ˙ h I 0 ˙ algSc P inv r R coe 1 h D h Base P
65 eldifi h I 0 ˙ h I
66 65 adantl R DivRing I U I 0 ˙ h I 0 ˙ h I
67 eqid P = P
68 2 6 67 lidlmcl P Ring I U algSc P inv r R coe 1 h D h Base P h I algSc P inv r R coe 1 h D h P h I
69 42 43 64 66 68 syl22anc R DivRing I U I 0 ˙ h I 0 ˙ algSc P inv r R coe 1 h D h P h I
70 53 4 1 67 45 5 59 uc1pmon1p R Ring h Unic 1p R algSc P inv r R coe 1 h D h P h M
71 44 55 70 syl2anc R DivRing I U I 0 ˙ h I 0 ˙ algSc P inv r R coe 1 h D h P h M
72 69 71 elind R DivRing I U I 0 ˙ h I 0 ˙ algSc P inv r R coe 1 h D h P h I M
73 eqid RLReg R = RLReg R
74 73 56 unitrrg R Ring Unit R RLReg R
75 44 74 syl R DivRing I U I 0 ˙ h I 0 ˙ Unit R RLReg R
76 75 61 sseldd R DivRing I U I 0 ˙ h I 0 ˙ inv r R coe 1 h D h RLReg R
77 5 1 73 6 67 45 deg1mul3 R Ring inv r R coe 1 h D h RLReg R h Base P D algSc P inv r R coe 1 h D h P h = D h
78 44 76 50 77 syl3anc R DivRing I U I 0 ˙ h I 0 ˙ D algSc P inv r R coe 1 h D h P h = D h
79 fveqeq2 g = algSc P inv r R coe 1 h D h P h D g = D h D algSc P inv r R coe 1 h D h P h = D h
80 79 rspcev algSc P inv r R coe 1 h D h P h I M D algSc P inv r R coe 1 h D h P h = D h g I M D g = D h
81 72 78 80 syl2anc R DivRing I U I 0 ˙ h I 0 ˙ g I M D g = D h
82 eqeq2 D h = sup D I 0 ˙ < D g = D h D g = sup D I 0 ˙ <
83 82 rexbidv D h = sup D I 0 ˙ < g I M D g = D h g I M D g = sup D I 0 ˙ <
84 81 83 syl5ibcom R DivRing I U I 0 ˙ h I 0 ˙ D h = sup D I 0 ˙ < g I M D g = sup D I 0 ˙ <
85 84 rexlimdva R DivRing I U I 0 ˙ h I 0 ˙ D h = sup D I 0 ˙ < g I M D g = sup D I 0 ˙ <
86 41 85 mpd R DivRing I U I 0 ˙ g I M D g = sup D I 0 ˙ <
87 eqid - P = - P
88 13 ad2antrr R DivRing I U I 0 ˙ g I M h I M D g = sup D I 0 ˙ < D h = sup D I 0 ˙ < R Ring
89 simprl R DivRing I U I 0 ˙ g I M h I M g I M
90 89 elin2d R DivRing I U I 0 ˙ g I M h I M g M
91 90 adantr R DivRing I U I 0 ˙ g I M h I M D g = sup D I 0 ˙ < D h = sup D I 0 ˙ < g M
92 simprl R DivRing I U I 0 ˙ g I M h I M D g = sup D I 0 ˙ < D h = sup D I 0 ˙ < D g = sup D I 0 ˙ <
93 simprr R DivRing I U I 0 ˙ g I M h I M h I M
94 93 elin2d R DivRing I U I 0 ˙ g I M h I M h M
95 94 adantr R DivRing I U I 0 ˙ g I M h I M D g = sup D I 0 ˙ < D h = sup D I 0 ˙ < h M
96 simprr R DivRing I U I 0 ˙ g I M h I M D g = sup D I 0 ˙ < D h = sup D I 0 ˙ < D h = sup D I 0 ˙ <
97 5 4 1 87 88 91 92 95 96 deg1submon1p R DivRing I U I 0 ˙ g I M h I M D g = sup D I 0 ˙ < D h = sup D I 0 ˙ < D g - P h < sup D I 0 ˙ <
98 97 ex R DivRing I U I 0 ˙ g I M h I M D g = sup D I 0 ˙ < D h = sup D I 0 ˙ < D g - P h < sup D I 0 ˙ <
99 18 ad2antrr R DivRing I U I 0 ˙ g I M h I M g - P h 0 ˙ D I 0 ˙ 0
100 31 a1i R DivRing I U I 0 ˙ g I M h I M g - P h 0 ˙ D Fn Base P
101 33 ad2antrr R DivRing I U I 0 ˙ g I M h I M g - P h 0 ˙ I 0 ˙ Base P
102 20 adantr R DivRing I U I 0 ˙ g I M h I M P Ring
103 simpl2 R DivRing I U I 0 ˙ g I M h I M I U
104 89 elin1d R DivRing I U I 0 ˙ g I M h I M g I
105 93 elin1d R DivRing I U I 0 ˙ g I M h I M h I
106 2 87 lidlsubcl P Ring I U g I h I g - P h I
107 102 103 104 105 106 syl22anc R DivRing I U I 0 ˙ g I M h I M g - P h I
108 107 adantr R DivRing I U I 0 ˙ g I M h I M g - P h 0 ˙ g - P h I
109 simpr R DivRing I U I 0 ˙ g I M h I M g - P h 0 ˙ g - P h 0 ˙
110 eldifsn g - P h I 0 ˙ g - P h I g - P h 0 ˙
111 108 109 110 sylanbrc R DivRing I U I 0 ˙ g I M h I M g - P h 0 ˙ g - P h I 0 ˙
112 fnfvima D Fn Base P I 0 ˙ Base P g - P h I 0 ˙ D g - P h D I 0 ˙
113 100 101 111 112 syl3anc R DivRing I U I 0 ˙ g I M h I M g - P h 0 ˙ D g - P h D I 0 ˙
114 infssuzle D I 0 ˙ 0 D g - P h D I 0 ˙ sup D I 0 ˙ < D g - P h
115 99 113 114 syl2anc R DivRing I U I 0 ˙ g I M h I M g - P h 0 ˙ sup D I 0 ˙ < D g - P h
116 115 ex R DivRing I U I 0 ˙ g I M h I M g - P h 0 ˙ sup D I 0 ˙ < D g - P h
117 imassrn D I 0 ˙ ran D
118 frn D : Base P * ran D *
119 29 118 ax-mp ran D *
120 117 119 sstri D I 0 ˙ *
121 120 39 sselid R DivRing I U I 0 ˙ sup D I 0 ˙ < *
122 121 adantr R DivRing I U I 0 ˙ g I M h I M sup D I 0 ˙ < *
123 ringgrp P Ring P Grp
124 20 123 syl R DivRing I U I 0 ˙ P Grp
125 124 adantr R DivRing I U I 0 ˙ g I M h I M P Grp
126 inss1 I M I
127 126 8 sstrid R DivRing I U I 0 ˙ I M Base P
128 127 adantr R DivRing I U I 0 ˙ g I M h I M I M Base P
129 128 89 sseldd R DivRing I U I 0 ˙ g I M h I M g Base P
130 128 93 sseldd R DivRing I U I 0 ˙ g I M h I M h Base P
131 6 87 grpsubcl P Grp g Base P h Base P g - P h Base P
132 125 129 130 131 syl3anc R DivRing I U I 0 ˙ g I M h I M g - P h Base P
133 5 1 6 deg1xrcl g - P h Base P D g - P h *
134 132 133 syl R DivRing I U I 0 ˙ g I M h I M D g - P h *
135 122 134 xrlenltd R DivRing I U I 0 ˙ g I M h I M sup D I 0 ˙ < D g - P h ¬ D g - P h < sup D I 0 ˙ <
136 116 135 sylibd R DivRing I U I 0 ˙ g I M h I M g - P h 0 ˙ ¬ D g - P h < sup D I 0 ˙ <
137 136 necon4ad R DivRing I U I 0 ˙ g I M h I M D g - P h < sup D I 0 ˙ < g - P h = 0 ˙
138 98 137 syld R DivRing I U I 0 ˙ g I M h I M D g = sup D I 0 ˙ < D h = sup D I 0 ˙ < g - P h = 0 ˙
139 6 3 87 grpsubeq0 P Grp g Base P h Base P g - P h = 0 ˙ g = h
140 125 129 130 139 syl3anc R DivRing I U I 0 ˙ g I M h I M g - P h = 0 ˙ g = h
141 138 140 sylibd R DivRing I U I 0 ˙ g I M h I M D g = sup D I 0 ˙ < D h = sup D I 0 ˙ < g = h
142 141 ralrimivva R DivRing I U I 0 ˙ g I M h I M D g = sup D I 0 ˙ < D h = sup D I 0 ˙ < g = h
143 fveqeq2 g = h D g = sup D I 0 ˙ < D h = sup D I 0 ˙ <
144 143 reu4 ∃! g I M D g = sup D I 0 ˙ < g I M D g = sup D I 0 ˙ < g I M h I M D g = sup D I 0 ˙ < D h = sup D I 0 ˙ < g = h
145 86 142 144 sylanbrc R DivRing I U I 0 ˙ ∃! g I M D g = sup D I 0 ˙ <