Metamath Proof Explorer


Theorem ig1pmindeg

Description: The polynomial ideal generator is of minimum degree. (Contributed by Thierry Arnoux, 19-Mar-2025)

Ref Expression
Hypotheses ig1pirred.p P = Poly 1 R
ig1pirred.g G = idlGen 1p R
ig1pirred.u U = Base P
ig1pirred.r φ R DivRing
ig1pirred.1 φ I LIdeal P
ig1pmindeg.d D = deg 1 R
ig1pmindeg.o 0 ˙ = 0 P
ig1pmindeg.2 φ F I
ig1pmindeg.3 φ F 0 ˙
Assertion ig1pmindeg φ D G I D F

Proof

Step Hyp Ref Expression
1 ig1pirred.p P = Poly 1 R
2 ig1pirred.g G = idlGen 1p R
3 ig1pirred.u U = Base P
4 ig1pirred.r φ R DivRing
5 ig1pirred.1 φ I LIdeal P
6 ig1pmindeg.d D = deg 1 R
7 ig1pmindeg.o 0 ˙ = 0 P
8 ig1pmindeg.2 φ F I
9 ig1pmindeg.3 φ F 0 ˙
10 8 adantr φ I = 0 ˙ F I
11 simpr φ I = 0 ˙ I = 0 ˙
12 10 11 eleqtrd φ I = 0 ˙ F 0 ˙
13 elsni F 0 ˙ F = 0 ˙
14 12 13 syl φ I = 0 ˙ F = 0 ˙
15 9 adantr φ I = 0 ˙ F 0 ˙
16 14 15 pm2.21ddne φ I = 0 ˙ D G I D F
17 4 adantr φ I 0 ˙ R DivRing
18 5 adantr φ I 0 ˙ I LIdeal P
19 simpr φ I 0 ˙ I 0 ˙
20 eqid LIdeal P = LIdeal P
21 eqid Monic 1p R = Monic 1p R
22 1 2 7 20 6 21 ig1pval3 R DivRing I LIdeal P I 0 ˙ G I I G I Monic 1p R D G I = sup D I 0 ˙ <
23 17 18 19 22 syl3anc φ I 0 ˙ G I I G I Monic 1p R D G I = sup D I 0 ˙ <
24 23 simp3d φ I 0 ˙ D G I = sup D I 0 ˙ <
25 nfv f φ I 0 ˙
26 6 1 3 deg1xrf D : U *
27 26 a1i φ I 0 ˙ D : U *
28 27 ffund φ I 0 ˙ Fun D
29 17 drngringd φ I 0 ˙ R Ring
30 29 adantr φ I 0 ˙ f I 0 ˙ R Ring
31 3 20 lidlss I LIdeal P I U
32 18 31 syl φ I 0 ˙ I U
33 32 ssdifssd φ I 0 ˙ I 0 ˙ U
34 33 sselda φ I 0 ˙ f I 0 ˙ f U
35 eldifsni f I 0 ˙ f 0 ˙
36 35 adantl φ I 0 ˙ f I 0 ˙ f 0 ˙
37 6 1 7 3 deg1nn0cl R Ring f U f 0 ˙ D f 0
38 30 34 36 37 syl3anc φ I 0 ˙ f I 0 ˙ D f 0
39 nn0uz 0 = 0
40 38 39 eleqtrdi φ I 0 ˙ f I 0 ˙ D f 0
41 25 28 40 funimassd φ I 0 ˙ D I 0 ˙ 0
42 27 ffnd φ I 0 ˙ D Fn U
43 8 adantr φ I 0 ˙ F I
44 32 43 sseldd φ I 0 ˙ F U
45 9 adantr φ I 0 ˙ F 0 ˙
46 nelsn F 0 ˙ ¬ F 0 ˙
47 45 46 syl φ I 0 ˙ ¬ F 0 ˙
48 43 47 eldifd φ I 0 ˙ F I 0 ˙
49 42 44 48 fnfvimad φ I 0 ˙ D F D I 0 ˙
50 infssuzle D I 0 ˙ 0 D F D I 0 ˙ sup D I 0 ˙ < D F
51 41 49 50 syl2anc φ I 0 ˙ sup D I 0 ˙ < D F
52 24 51 eqbrtrd φ I 0 ˙ D G I D F
53 16 52 pm2.61dane φ D G I D F