Metamath Proof Explorer


Theorem ig1pnunit

Description: The polynomial ideal generator is not a unit polynomial. (Contributed by Thierry Arnoux, 19-Mar-2025)

Ref Expression
Hypotheses ig1pirred.p P = Poly 1 R
ig1pirred.g G = idlGen 1p R
ig1pirred.u U = Base P
ig1pirred.r φ R DivRing
ig1pirred.1 φ I LIdeal P
ig1pirred.2 φ I U
Assertion ig1pnunit φ ¬ G I Unit P

Proof

Step Hyp Ref Expression
1 ig1pirred.p P = Poly 1 R
2 ig1pirred.g G = idlGen 1p R
3 ig1pirred.u U = Base P
4 ig1pirred.r φ R DivRing
5 ig1pirred.1 φ I LIdeal P
6 ig1pirred.2 φ I U
7 eqid Unit P = Unit P
8 simpr φ G I Unit P G I Unit P
9 eqid LIdeal P = LIdeal P
10 1 2 9 ig1pcl R DivRing I LIdeal P G I I
11 4 5 10 syl2anc φ G I I
12 11 adantr φ G I Unit P G I I
13 4 drngringd φ R Ring
14 1 ply1ring R Ring P Ring
15 13 14 syl φ P Ring
16 15 adantr φ G I Unit P P Ring
17 5 adantr φ G I Unit P I LIdeal P
18 3 7 8 12 16 17 lidlunitel φ G I Unit P I = U
19 6 adantr φ G I Unit P I U
20 19 neneqd φ G I Unit P ¬ I = U
21 18 20 pm2.65da φ ¬ G I Unit P