Metamath Proof Explorer


Theorem ig1prsp

Description: Any ideal of polynomials over a division ring is generated by the ideal's canonical generator. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses ig1pval.p P = Poly 1 R
ig1pval.g G = idlGen 1p R
ig1pcl.u U = LIdeal P
ig1prsp.k K = RSpan P
Assertion ig1prsp R DivRing I U I = K G I

Proof

Step Hyp Ref Expression
1 ig1pval.p P = Poly 1 R
2 ig1pval.g G = idlGen 1p R
3 ig1pcl.u U = LIdeal P
4 ig1prsp.k K = RSpan P
5 1 2 3 ig1pcl R DivRing I U G I I
6 eqid r P = r P
7 1 2 3 6 ig1pdvds R DivRing I U x I G I r P x
8 7 3expa R DivRing I U x I G I r P x
9 8 ralrimiva R DivRing I U x I G I r P x
10 drngring R DivRing R Ring
11 1 ply1ring R Ring P Ring
12 10 11 syl R DivRing P Ring
13 12 adantr R DivRing I U P Ring
14 simpr R DivRing I U I U
15 eqid Base P = Base P
16 15 3 lidlss I U I Base P
17 16 adantl R DivRing I U I Base P
18 17 5 sseldd R DivRing I U G I Base P
19 15 3 4 6 lidldvgen P Ring I U G I Base P I = K G I G I I x I G I r P x
20 13 14 18 19 syl3anc R DivRing I U I = K G I G I I x I G I r P x
21 5 9 20 mpbir2and R DivRing I U I = K G I