Metamath Proof Explorer


Theorem ig1pval2

Description: Generator of the zero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015) (Proof shortened by AV, 25-Sep-2020)

Ref Expression
Hypotheses ig1pval.p P = Poly 1 R
ig1pval.g G = idlGen 1p R
ig1pval2.z 0 ˙ = 0 P
Assertion ig1pval2 R Ring G 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 ig1pval.p P = Poly 1 R
2 ig1pval.g G = idlGen 1p R
3 ig1pval2.z 0 ˙ = 0 P
4 1 ply1ring R Ring P Ring
5 eqid LIdeal P = LIdeal P
6 5 3 lidl0 P Ring 0 ˙ LIdeal P
7 4 6 syl R Ring 0 ˙ LIdeal P
8 eqid deg 1 R = deg 1 R
9 eqid Monic 1p R = Monic 1p R
10 1 2 3 5 8 9 ig1pval R Ring 0 ˙ LIdeal P G 0 ˙ = if 0 ˙ = 0 ˙ 0 ˙ ι g 0 ˙ Monic 1p R | deg 1 R g = sup deg 1 R 0 ˙ 0 ˙ <
11 7 10 mpdan R Ring G 0 ˙ = if 0 ˙ = 0 ˙ 0 ˙ ι g 0 ˙ Monic 1p R | deg 1 R g = sup deg 1 R 0 ˙ 0 ˙ <
12 eqid 0 ˙ = 0 ˙
13 12 iftruei if 0 ˙ = 0 ˙ 0 ˙ ι g 0 ˙ Monic 1p R | deg 1 R g = sup deg 1 R 0 ˙ 0 ˙ < = 0 ˙
14 11 13 eqtrdi R Ring G 0 ˙ = 0 ˙