Metamath Proof Explorer


Theorem ig1pval3

Description: Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015) (Revised by AV, 25-Sep-2020)

Ref Expression
Hypotheses ig1pval.p P = Poly 1 R
ig1pval.g G = idlGen 1p R
ig1pval3.z 0 ˙ = 0 P
ig1pval3.u U = LIdeal P
ig1pval3.d D = deg 1 R
ig1pval3.m M = Monic 1p R
Assertion ig1pval3 R DivRing I U I 0 ˙ G I I G I M D G I = sup D I 0 ˙ <

Proof

Step Hyp Ref Expression
1 ig1pval.p P = Poly 1 R
2 ig1pval.g G = idlGen 1p R
3 ig1pval3.z 0 ˙ = 0 P
4 ig1pval3.u U = LIdeal P
5 ig1pval3.d D = deg 1 R
6 ig1pval3.m M = Monic 1p R
7 1 2 3 4 5 6 ig1pval R DivRing I U G I = if I = 0 ˙ 0 ˙ ι g I M | D g = sup D I 0 ˙ <
8 7 3adant3 R DivRing I U I 0 ˙ G I = if I = 0 ˙ 0 ˙ ι g I M | D g = sup D I 0 ˙ <
9 simp3 R DivRing I U I 0 ˙ I 0 ˙
10 9 neneqd R DivRing I U I 0 ˙ ¬ I = 0 ˙
11 10 iffalsed R DivRing I U I 0 ˙ if I = 0 ˙ 0 ˙ ι g I M | D g = sup D I 0 ˙ < = ι g I M | D g = sup D I 0 ˙ <
12 8 11 eqtrd R DivRing I U I 0 ˙ G I = ι g I M | D g = sup D I 0 ˙ <
13 1 4 3 6 5 ig1peu R DivRing I U I 0 ˙ ∃! g I M D g = sup D I 0 ˙ <
14 riotacl2 ∃! g I M D g = sup D I 0 ˙ < ι g I M | D g = sup D I 0 ˙ < g I M | D g = sup D I 0 ˙ <
15 13 14 syl R DivRing I U I 0 ˙ ι g I M | D g = sup D I 0 ˙ < g I M | D g = sup D I 0 ˙ <
16 12 15 eqeltrd R DivRing I U I 0 ˙ G I g I M | D g = sup D I 0 ˙ <
17 elin G I I M G I I G I M
18 17 anbi1i G I I M D G I = sup D I 0 ˙ < G I I G I M D G I = sup D I 0 ˙ <
19 fveqeq2 g = G I D g = sup D I 0 ˙ < D G I = sup D I 0 ˙ <
20 19 elrab G I g I M | D g = sup D I 0 ˙ < G I I M D G I = sup D I 0 ˙ <
21 df-3an G I I G I M D G I = sup D I 0 ˙ < G I I G I M D G I = sup D I 0 ˙ <
22 18 20 21 3bitr4i G I g I M | D g = sup D I 0 ˙ < G I I G I M D G I = sup D I 0 ˙ <
23 16 22 sylib R DivRing I U I 0 ˙ G I I G I M D G I = sup D I 0 ˙ <